
The Parallel Pre-Processor: a Compiler for Distributed
and Shared Memory Computers

Mark W. Govett1

National Oceanic and Atmospheric Administration
Forecast Systems Laboratory

Boulder, Colorado 80305, USA

Abstract

The goal in developing a robust parallelization tool is that it is easy to use, it requires minimal modifications to the
original serial code, it is extensible to a wide variety of applications, and that it provide good portable performance.
A directive-based parallelization tool is described called the Parallel Pre-processor (PPP) that meets most of these
goals. The user inserts directives, in the form of comments, into existing Fortran code. PPP translates the code and
directives into a parallel version that runs efficiently on shared and distributed memory high-performance computing
platforms including: SGI Origin, IBM SP2, Cray T3E, SUN, Alpha and Intel Clusters. Twenty directives are
available to support operations including array re-declarations, inter-process communications, loop transformations,
and parallel I/O operations. PPP also provides support for incremental parallelization and parallel debugging.

Keywords: Directive-based parallelization, Weather and ocean models, parallel compiler, Fortran source to source
translator, distributed memory computers

1. Introduction

Distributed memory computers (DMCs) are increasingly used to solve scientific problems
because they offer superior price performance over their shared-memory counterparts. However,
the biggest impediment toward the use of distributed memory computers is the lack of good high
level programming models that run efficiently and are portable. Ideally these programming
models should provide efficient execution of the application, access to simple high-level
programming constructs, and be minimally invasive. Several programming models are supported
by computer vendors and widely used by the scientific community. Currently, HPF, MPI and
OpenMP are the most popular but none has proven effective at being sufficiently high level and
offering scalable, portable performance.

High Performance Fortran (HPF) was developed to address the need to automatically parallelize
Fortran codes. Despite support by parallel computer vendors and scientific institutions, it has
largely failed to live up to the promise of high-performance and ease-of-use. The most basic
short-coming of HPF is in the compiler’s inability to determine the optimal location of inter-
process communications efficiently. Code restructuring and the insertion of additional HPF
directives can help the compiler do a better job, but this often requires additional effort by the
programmer and performance is often significantly less than hand coded solutions. Additional
research at Rice University has been done to create a distributed memory HPF (dHPF) to address
the performance shortcomings and they have achieved some success [6]. However, performance
still lags MPI-based hand coded solutions by at least 15 percent (often much more), and code
restructuring is often required.

1 E-mail address: govett@fsl.noaa.gov (M.Govett)

Since good performance is critical in most scientific applications, users have largely rejected
HPF as a viable programming model. In order to achieve good results on DMCs, message
passing libraries such as MPI are used. While the performance and scalability of parallel codes
using message-passing libraries such as MPI can be quite good, they are relatively low-level and
can require the programmer to expend a significant amount of effort to parallelize their code.
Further, the resulting code may differ substantially from the original serial version and code
restructuring is often desirable or necessary.

Another programming model commonly used to parallelize Fortran codes is OpenMP. OpenMP
is a standard set of directives, designed in a collaboration between computer vendors and
applications users, that has become widely used in the scientific community. OpenMP can be
used to quickly produce parallel code, with minimal impact on the serial version. However,
OpenMP is only available for shared memory computers. To get around this restriction, software
developers have achieved limited success combining OpenMP (shared memory parallelism) with
MPI (distributed memory parallelism) on hybrid DMCs. In either case however, obtaining good
scalable performance often requires as much effort as when MPI is used directly.

These programming environments target Fortran codes since, despite its drawbacks, it remains
the most popular programming language for scientific applications. In addition to these
programming models, application specific frameworks have also emerged as a viable alternative
to traditional language based approaches. In the atmospheric and ocean modeling community for
example, the Earth System Modeling Framework (ESMF) [7] and the Program for Integrated
Earth System Modeling [15] projects have begun recently with a goal of standardizing the
interfaces between the framework and the applications that use them. Standard interfaces allow
scientific codes to be more easily moved between models when they are built using the same
framework. In addition to providing traditional library-based low-level communications
routines, these approaches plan to support coupling of models and the robust handling of model
grids that are required by climate applications. These tools are slated to be available in 2005, but
at this time, it is unclear the extent to which source code changes will be required, or what the
performance impacts will be in using them.

Despite the performance problems of HPF, and the limitations of OpenMP however, high-level
directive-based parallelization remains a viable and attractive programming model for distributed
memory. Directives offer a high level way to provide parallelization details to the compiler.
Directives are lower level than modeling frameworks and thus permit flexibility and extensibility
in handling wide ranging applications, yet are sufficiently high level as to allow common parallel
operations to be encapsulated into simple high level directives.

Using this as a template to guide our development, we have built a compiler called the Parallel
Pre-Processor (PPP) to translate Fortran source code and high level parallelization directives
inserted by the programmer, into efficient parallel code. PPP directives provide similar
functionality to HPF; however, in contrast to HPF where the placement of communications is
determined by the compiler, PPP requires the programmer to determine the location of
communications explicitly.

PPP has been used to parallelize many atmospheric and oceanic models including the Global
Forecast System (GFS) [12] and the Typhoon Forecast System (TFS) [5] for the Central Weather
Bureau in Taiwan, the Regional Ocean Modeling System (ROMS) [10], the Hybrid Coordinate
Ocean Model (HYCOM) [2], the National Centers for Environmental Prediction (NCEP) Eta
model [14], the high resolution limited area Quasi Non-hydrostatic model (QNH) [13], the
Princeton Ocean Model (POM) [4], and the 20 km Rapid Update Cycle (RUC) model running
operationally at NCEP [1]. These models run, without code change on a most HPCs including
IBM SP2, Cray T3E, SGI Origin, Fujitsu VPP, and Alpha Linux clusters. Further, recent
performance comparisons have demonstrated that the models parallelized using PPP runs as
efficiently as their OpenMP and MPI counterparts.

The rest of this paper will describe PPP in more detail. Section 2 will describe PPP and highlight
some advanced capabilities not available in other parallelization tools. Section 3 briefly
describes two applications parallelized using PPP and compares their performance to OpenMP
and MPI versions of these codes. Section 4 concludes and offers some insights and future
directions of this approach.

2. Introduction to PPP

PPP is a Fortran code analysis and translation tool that was built using the Eli compiler
construction system [9]. Eli is a domain specific programming environment that understands
how to solve problems that are common to compiler development. In contrast to commonly used
to tools such as LEX and YACC which were designed to generate scanners and parsers from
simple specifications, Eli was designed to generate the whole compiler, given a high level
specification. Specifications can be written that independently define the grammar, scanning,
parsing, name and type analysis, symbol and definition table creation, language analysis, and the
generation of the final output code. Eli will then do the analysis necessary, including
determining a tree traversal strategy necessary to satisfy the specifications and generate a
complete compiler. Eli builds the compiler either as a stand-alone executable or generates ANSI
C code complete with makefile that can be ported to other systems.

PPP executables are used to analyze the serial code and user-inserted directives to determine how
the code should be modified. Generated code relies on MPI based support libraries to perform
operations including communications, parallel I/O, synchronization, local and global address
space translation, and data layout. This library layer currently provides support for applications
using regular structured grids that are solved using finite difference approximation (FDA) or
spectral methods. Additionally, this library provides support for mesh refinement of nested
models, and can transform data between grids that have been decomposed differently. Finally,
this middle software layer provides a way in which to incorporate architectural-based
optimizations, and make upgrades in message passing software transparent to the user. For
example the upgrade of MPI from MPI-1 to MPI-2 requires only modifications to the
communications layer and not to the application code. PPP and the run-time library, in
combination, represent a parallelization tool called the Scalable Modeling System (SMS).

SMS has been designed to handle most aspects of parallel programming including data
decomposition, reductions, handling of boundary conditions, static and dynamic memory, I/O,
alignment, incremental parallelization, debugging and optimization operations. Access to
parallization is primarily through twenty directives that are inserted into the application code.
Some of these directives are similar to HPF. For example the DISTRIBUTE directive is used to
identify the arrays that will be decomposed as it does in HPF$DISTRIBUTE. The DISTRIBUTE
directive also supports the HPF$ALIGN capabililty via a keyword option. Many operations,
such as I/O do not require any PPP directives; the translator simply determines how each array is
decomposed and then generates the correct code.

However, the user is required to define the decomposition (DECLARE_DECOMP and
CREATE_DECOMP). In addition, the type and placement of communications operations must
be stated explicitly by the programmer. Three types of communication are currently supported:
HALO_UPDATE (communicate halo region data between neighboring processors), TRANSFER
(handle communication required between arrays that are decomposed differently), and REDUCE
(a global reduction operation). To perform communication operations, the programmer simply
specifies the arrays to be communicated and PPP will do the name and type analysis necessary to
produce the correct translated code.

PPP does not currently do inter-procedural analysis so additional directives are required to
determine if variables must be converted between local and global address spaces using
TO_GLOBAL, TO_LOCAL and GLOBAL_INDEX. In addition, the PARALLEL directive is
used to identify do-loops that require parallelization. While these directives are currently
required, additional analysis by the compiler could eliminate the need for them. For example,
PPP could determine parallel do-loop indices by identifying each decomposed array that is used
within the loop and the indices used to reference them.

Further details about these directives and support for the given operations can be found a papers
by Govett, et al [8]. PPP directives also provide support for incremental code parallelization and
debugging support. This functionality is not provided by HPF or most parallelization tools and
will be further described.

2.1 Incremental Parallelization

SMS provides support for simplifying code parallelization with a directive called SERIAL that
permits serial execution of selected portions of the user's code. This directive has several
important uses. First, it allows users to parallelize their code incrementally rather than being
forced into an all-or-nothing approach. Once assured of correct results, the user can remove
these serial regions and further parallelize their code. Second, this directive can be used to avoid
the parallelization of some sections of code that are either executed infrequently (e.g. model
initialization) or cannot be parallellized by PPP, such as NetCDF I/O [16].

Serial regions are implemented by gathering all decomposed arrays, executing the code segment
on a single process, then scattering decomposed or broadcasting non-decomposed results back to
each processor as illustrated in Figure 1. In this figure, the routine not_parallel executes on a

single process and references global arrays that have been gathered by the appropriate SMS
routines. While the extra communications required to do gather or scatter operations will slow
performance, this directive's versatility has proven to be very useful during code parallelization.

CSMS$SERIAL

“global” “local”

“local” “global”

CALL NOT_PARALLEL(...)

gather

scatter

broadcast

Figure 1: An illustration of how SMS supports incremental parallelization. Prior to execution of the serial region of
code, decomposed arrays are gathered into global arrays, referenced by the serial section of code, and then results are
scattered or broadcast back to the processors at the end of the serial region.

2.2 Debugging

Finding run-time bugs during the initial code parallelization or ensuing code maintenance phase
can be the most difficult and time consuming task required in running codes on a DMC system.
Two PPP directives have been developed to support debugging. As illustrated in Figure 2, the
COMPARE_VAR directive is used to verify interior region data points are correct, and
CHECK_HALO is used similarly for the halo points.

PPP Debugging Directives
Insert directives in the code to verify

array values are correct

Interior Region

Halo Region

portion of a decomposed array
owned by a single process

check_halo

compare_var

Figure 2: An illustration of two debugging directives that are available to verify decomposed array values are
correct. Scalars and non-decomposed arrays can also be compared. These directives have greatly simplified
debugging and parallel code development.

Using the CHECK_HALO directive, halo region values from each user-specified array are
compared with their corresponding interior points on the neighboring process. When data values
differ, SMS outputs an error message containing the array name, and the location where the
problem occurred, and then terminates execution.

The COMPARE_VAR directive, patterned after work by O'Keefe [3], provides the ability to
compare array or scalar values between a correctly working code and another run that uses
different numbers of processors. For example, the programmer can specify a comparison of the
array "x", for a single processor run and for a multiple process run by inserting the directive:

csms$compare_var (x)

in the code and then entering appropriate command line arguments to request concurrent
execution of the code. Wherever COMPARE_VAR directives appear in the code, user-specified
arrays will be compared as shown in Figure 3. If differences are detected, SMS will display the
name of the variable, the array location (e.g., the i, j, k index) and values from each run, the
location in the code, and then terminate execution. Conversely, if no differences are found, SMS
will continue executing the code.

CSMS$COMPARE_VAR
One Process Exec Four Process ExecSMS Runtime Environment

csms$compare_var(A,B)

csms$compare_var(C)

csms$compare_var(A,B)

csms$compare_var(C)

executable

code

program main program main

executable

code

executable

code

executable

code

end program end program

Compare C

Compare A,B

Figure 3: An illustration of how COMPARE_VAR is implemented. In this example, two executables are launched
concurrently from the command line. When a COMPARE_VAR directive is encountered, the executables
synchronize, and then compare the specified arrays. If any elements of the arrays differ, SMS will print the location
and values of the data point and then terminate the execution of the runs.

The ability to compare intermediate model values anywhere in the code has proven to be a
powerful debugging tool during code parallelization. For example, the time required to debug a
recent code parallelization was reduced from an estimated eight weeks down to two simply
because the programmer did not have to spend inordinate amounts of time determining where

parallelization mistakes were made.

These directives have also proven to be a useful way to ensure that model upgrades continue to
produce the correct results. For example, a scientist can verify source code changes by simply
comparing the output files of the serial “control” run and subsequent parallel runs. In the event
results differ, they can turn on SMS debugging (a run-time option) which compares the
intermediate results of the arrays specified by COMPARE_VAR. In the event differences
appear, they can quickly locate the problem and determine the best solution. In this way, SMS
users have found the debugging directives very useful because they allow the code author to
control the maintenance and upgrades of their parallel codes rather than requiring the help of a
computer specialist.

3. Performance Comparisons

As a high-level software tool, SMS requires extra computations to maintain data structures that
encapsulate low-level MPI functionality which could lead to potential performance degradation.
To measure this impact, a performance comparison was done between the hand-coded MPI based
version of the Eta model running operationally at NCEP, and the same Eta model parallelized
using SMS. The MPI Eta model was considered a good candidate for fair comparison since it is
an operational model used to produce daily weather forecasts for the U.S. National Weather
Service and has been optimized for high performance on the IBM SP2. Fewer than 200
directives were added to the 19,000 line Eta model during SMS parallelization. Performance
results show SMS-Eta was faster than MPI-Eta for all processor counts tested as illustrated in
Table 1. Further analysis indicates that most of the performance gains in SMS-Eta were due to
more efficient communications.

Number of
Processors

MPI-Eta
Time

SMS-Eta
Time

SMS faster SMS-Eta
Efficiency

4 11197 10781 4 % 1.00
8 5317 5258 1 % 1.03
16 2878 2774 4 % 0.97
32 1471 1446 2 % 0.93
64 872 820 6 % 0.82
88 694 643 7 % 0.76

Table 1: Eta model performance for MPI-Eta and SMS-Eta run on NCEP’s IBM SP-2. Run times are given in
seconds for a full 48 hour model run including model initialization and the generation of hourly output files.

Another model studied in recent tests, compared the performance of a OpenMP version of the
Regional Ocean Modeling System (ROMS), and an SMS parallelized version of the same code.
The ROMS model is a ocean model developed jointly by UCLA and Rutgers University that is
used by modeling groups around the world. One hundred-twenty directives were added to the
13,000 line ROMS code during SMS parallelization. This was equivalent to the number of
OpenMP directives required. The SMS and OpenMP performance results, shown in Table 2, are

for model runs on an SGI Origin 3000. Both one and two dimensional decompositions were
used with the fastest run-times used in each case. In general, the fastest SMS run times were
observed when data were decomposed in two dimensions, since communications scale better;
whereas OpenMP did better when a one dimensional decomposition was used. In addition, the
SMS one processor run was slower than the serial code because the SMS version used dynamic
memory.

Number of
Processors

OpenMP
Time

SMS
Time

SMS
Efficiency

% SMS
Faster

1 143.9 148.5 1.00 -3.1
2 70.0 74.4 1.00 -5.9
4 36.8 39.4 0.94 -6.5
8 19.6 20.7 0.90 -5.6
16 10.9 11.1 0.84 -1.8
32 6.9 6.5 0.71 5.8

Table 2: A comparison of OpenMP and SMS runs of the ROMS model on the SGI Origin 3000. The serial code
ran in 144.7 seconds.

Further details of these performance studies are provided in a paper by Govett, et al. [8].

4. Conclusion

We have demonstrated that directive-based code parallelization is a viable method in which to
parallelize codes for distributed memory computers. A compiler has been developed that
provides simple high-level parallelization directives, requires no modifications to the original
serial code, and demonstrates performance comparable to MPI or OpenMP. This tool has been
used to parallelize a number of weather and ocean code for use on a variety of shared and
distributed memory computers. The key to the success of this tool has been the code analysis and
translation capabilities of PPP. This tool was built using an advanced compiler building tool
called Eli that simplified the development tasks.

Further work remains to advance the analysis capabilities of PPP that will lead to fewer
directives that must be inserted into the user code. Recent tests have shown that up to 50 percent
of the directives can be eliminated by more extensive code analysis. Parallelization using PPP
could become largely determining how and which arrays are decomposed, and the placement of
communications in the serial code.

We believe the success of this work demonstrates the usefulness of the approach. While this tool
has only been applied to weather and ocean models the approach is sufficiently general to be
applied to other application areas. We would like this development to serve as a prototype for a
general purpose compiler that can bridge the gap between low-level yet high performance
message passing libraries and high-level but sub-optimal performance programming models such
as HPF.

References

[1] S.Benjamin, J.Brown , K.Brundage, D.Dévényi, G.Grell, D.Kim, B.Schwartz, T.Smirnova,
T.Smith, S.Weygandt and G.Manikin, RUC 20 – The 20-km version of the Rapid Update
Cycle, National Weather Service Technical Procedures Bulletin No. 490 (2002),
http://ruc.fsl.noaa.gov/ppp_pres/RUC20-tpb.pdf .

[2] R.Bleck, An Oceanic General Circulation Model Framed in Hybrid Isopycnic-Cartesian
Coordinates. Submitted to J. Ocean Modeling (2001).

[3] R.Bleck, S.Dean, M.O’Keefe and A.Sawdey, A comparison of data-parallel and message
passing versions of the Miami Isopycnic Coordinate Ocean Model (MICOM), Parallel
Computing, 21 (1995).

[4] A.F.Blumberg and G. L. Mellor, A description of a three-dimensional coastal ocean
circulation model, Three-Dimensional Coastal ocean Models, edited by N. Heaps, 208 pp.,
American Geophysical Union (1987).

[5] D.S.Chen, K.N.Huang, T.C.Yeh, M.S.Peng , and S.W.Chang, Recent improvements of the
typhoon forecast system in Taiwan. 23th Conference on Hurricanes and Tropical Meterology.
Dallas, TX., (2000) 823-825.

[6] The dHPF Compiler Project. http://www.cs.rice.edu/~dsystem/dhpf/overview.html.
[7] Earth System Modeling Framework Development Team, http://www.esmf.ucar.edu/.
[8] M.Govett, L.Hart, T.Henderson, J.Middlecoff, and D.Schaffer, The Scalable Modeling

System: Directive-Based Code Parallelization for Distributed and Shared Memory
Computers. Submitted to Journal of Parallel Computing (2002).

[9] R.Gray, V.Heuring, S.Levi, A.Sloane, and W.Waite, Eli, A Flexible Compiler Construction
System, Communications of the ACM 35 (1992) 121-131.

[10] D.B.Haidvogel, H.G.Arango, K.Hedstrom, A.Beckman, P.Malanotte-Rizzoli, and A.F
Shchepetkin, Model Evaluation Experiments in the North Atlantic Basin: Simulations in
Nonlinear Terrain-Following Coordinates, Dyn. Atmos. Oceans 32 (2000) 239-281.

[11] T.Henderson, C.Baillie, S.Benjamin, T.Black, R.Bleck, G.Carr, L.Hart, M.Govett,
A.Marroquin, J.Middlecoff and B.Rodriguez, Progress Toward Demonstrating Operational
Capability of Massively Parallel Processors at Forecast Systems Laboratory, Proceedings of
the Sixth ECMWF Workshop on the Use of Parallel Processors in Meteorology, European
Centre for Medium Range Weather Forecasts, Reading, England (1994).

[12] C.S.Liou, J.Chen, C.Terng, F.Wang, C.Fong, T.Rosmond, H.Kuo, C.Shiao, and M. Cheng,
The Second-Generation Global Forecast System at the Central Weather Bureau in Taiwan,
Weather and Forecasting 12 (1997) 653-663.

[13] A.E.MacDonald, J.L.Lee, and Y.Xie, QNH: Design and Test of a Quasi Non-hydrostatic
Model for Mesoscale Weather Prediction. Monthly Weather Review 128 (2000) 1016-1036.

[14] F.Mesinger, The Eta Regional Model and its Performance at the U.S. National Centers for
Environmental Prediction. International Workshop on Limited-area and Variable Resolution
Models. Beijing, China, WMO/TD 699 (1995) 42-51.

[15] Program for Integrated Earth System Modeling (PRISM) Web Page: http://prism.hnes.org/.
[16] R.K.Rew and G.P.Davis, Unidata’s netCDF Interface for Scientific Data Access, Sixth

International Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology, Anaheim, CA (1990).

http://ruc.fsl.noaa.gov/ppp_pres/RUC20-tpb.pdf
http://www.esmf.ucar.edu/
http://prism.hnes.org/

	Abstract

